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JACKKNIFING THE KAPLAN-MEIER SURVIVAL ESTIMATOR

FOR CENSORED DATA: SIMULATION RESULTS AND ASYMPTOTIC ANALYSIS

Donald P. Gaver

Rupert G. Miller, Jr.

1. Introduction

Censored data problems arise frequently in medical, and

also in engineering system reliability, applications. For example,

in medical survivorship studies some subjects may be lost to

follow-up, or available data may be analyzed before all subjects

have expired. In the equipment reliability context observed units

may still be in operation, perhaps after several previous failures,

at the time of the analysis. Considerable attention has been

recently devoted to developing informative statistical methods

for handling data of this type (see Kalbfleisch and Prentice (1980)).

It is straightforward, though sometimes computationally

tedious, to deal with censoring in a parametric manner, i.e. by

assuming a specific form for the lifetime distribution (exponen-

tial, Weibull, lognormal, or whatever) and then estimating param-

eters, perhaps by maximum likelihood. The approach adopted here

is, instead, to begin with the Kaplan-Meier (1958) product-limit

estimator of survival probability. This estimator is the non-

parametric maximum likelihood estimator of a distribution function

from a sample of singly-censored data. Then, since the jackknife

technique has been shown to be widely useful for obtaining robust

intervals, cf. Miller (1974), it is applied to the Kaplan-Meier

estimate in order to obtain approximate confidence intervals for



the survival probability. It is reasonable to argue that if the

jackknife is to be valid under complex censoring it must perform

correctly in this simplest of all situations, and if it does work

here then it is likely to also work in more complex settings.

Therefore, in a sense we are reporting on the results of a pilot

study of an attractive procedure.

In this paper the effect of jackknifing the Kaplan-Meier

estimate will be examined both by Monte Carlo simulation (sampling

experiments) and by asymptotic analysis. In Section 4, we report

on the results of some extensive Monte Carlo investigations, com-

paring confidence limits for survival probability obtained via

jackknife with those from other techniques. It will be seen that

the jackknife seems to perform well for moderate sample sizes, even

under some rather unusual conditions. In Section 5, asymptotic

results are reported that provide theoretical underpinnings for

the jackknife procedure, at least for large sample sizes. Specifi-

cally, it is shown that the jackknifed estimate is approximately

normal aith the asymptotically correct variance, and hence produces

correct confidence limits for the Kaplan-Meier estimate. Taken by

itself, this result may not be terribly important, because an

expression for the variance of the estimator is known, and it can

be estimated by substituting estimates of any unknown functions

into the expression. However, for doubly censored data (cf. Turn-

bull (1974)), and for data with censoring and truncation, the situ-

ation is more complex (cf. Turnbull (1978)). The fact that the jack-

knife works in the singly censored case makes it more likely that

it works for these more complex censoring patterns and for others

as well.
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It should be noted that the bootstrap procedure, a

re-sampling approach investigated by Efron (1979) and (1981) is

also applicable to complex censoring situations, apparently

giving results in good agreement with Greenwood's formula for

a particular case investigated.
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2. Formulation of the Problem; the Kaplan-Meier Estimate

Suppose x,x 2 ,...,x n  are n observed survival times,

e.g. of medical patients or of equipments subject to failure.

Some of these observations are of complete lifetimes (failure

ti, s) but others are not, having been censored by the time of

observation. For short we refer to complete observations as

deaths, and censored observations as losses. Censoring simply

means that a "complete time" is not observed, although a "partial

time," up to the censoring, is. Censoring complicates the prob-

lem of estimating the theoretical survival probability to time

x, denoted by F (x) = 1-F (x).

Kaplan and Meier (1958) furnish a maximum likelihood

estimate of F0 (x) from among the class of admissable distribu-

tions. This product-limit estimate may be written in several

equivalent ways, assuming no ties among the observations:

-o~ ~ r 6
_ W 3 (2.l,a)n x.< x

1

n i

= i (2.l,b)il+

= 1 1i (2.1,c)i=l P i=l n

In (2.l,a), r. is the rank of xi among the ordered observa-

tions x (1) <X (2) ... < X(n) , and 6i is uity if x i is an

observed death, being zero otherwise. In (2.l,b),
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1 if x (i) < x and is a time of death
(uncensored)

6i(x) = (2.2)

In (2.1,c) ni(=n-(i-l)) represents the number of items exposed

(to either death or loss) at the ith ordered time, and k(x) is

the total number of deaths by time x.

A numerical example helps to explain the estimate. Suppose

the data points are

1 <2* <4 <5* < 1* < 8 < 10

where the starred measurements are losses, and the rest deaths.

Let us estimate the survival probability to or beyond x 6. Then,

since n = 7, and k(6) = 2

77(6) 1 7)l72 0 (231 (7-40 47 7 7- 7 _ -2

by (2.l,b)

(7-1 (7-2-i1 
1= (7**1 7-l -

by (2.1,c).

Note that by definition (2.2) the estimate jumps down

following data values that are deaths, does not jump at

losses, and remains cormotant between down-jumps. Technically,

-0F (x) is a left-continuous monotonically non-increasing stepn

function; this makes F 0(x), the estimated distribution of time
n

of death, left-continuous as well.
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3. Interval Estimates for the Kaplan-Meier Estimate

For a given set of data the K.-M. estimate provides a

point estimate of the survival probability. It is, of course,

desirable to assess the stability of such an estimate under rea-

sonable assumptions about the origin of the data; specifically it

is useful to furnish approximate confidence intervals for a sur-

vival distribution F 0(x). The jackknife procedure, see Miller

(1974) and Mosteller and Tukey (1977), is one way of producing

such limits. In this section we describe the computation of jack-

knife limits, and compare the results to confidence limits obtained

by alte-native procedures. Comparisons are made by simulation.

3.1. The Jackknife Procedure

The jackknife procedure is well-described in Mosteller

and Tukey (1977), where it is pointed out that a preliminary

transformation to approximately symmetrize the sampling distri-

bution of the estimator is beneficial; see also Cressie (1981).

For this study we have chosen to utilize the classical "inverse

sine" transformation that tends to stabilize the variance of--and

also approximately symmetrize--binomial count data. This trans-

formation is suggested since the number of samples surviving a fixed

time would be binomial under ideal conditions if there were no

censoring. Initial experiments with a logistic transformation

proved to be less satisfactory, as was a simple log transformation;

in practice, both log and logistic transformations must involve a

"start," see Tukey 11977], which influences the coverage. A natural

choice is 1/2n, see Cox (19721, but systematic confidence interval

undercoverage results, empirically suggesting a larger value. Here

is our procedure.
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(a) Select a value of x at which tQ estimate survival

probability.

(b) Compute FO(X), e.g. by (2.1).

(c) Compute An (x) = sin-l1 F no (x).
-

nn

(d) Compute F_ (x), the K.-M. estimate leaving out the
n-l,j

jth observation, whether it be an observed (recorded)

death, or a loss. The formula actually used was

-o i-l n-l-j (x) n j
F0 (x) = ) n-i (n-jl (3.1)

n-l,i j= l j=i+l

(e) Compute A (x) = sin F (
n-lj n-l,j

(f) Compute the jth pseudovalue:

v= nAn(X) - (n-l)An-l, j ( x), j =1,2,...,n

(g) Find the mean and variance of the pseudovalues:

- 1 n 2 1 n -2vjj , and sv = V (V.-v)
n 

I ( ni

and sv = v

(h) Compute (approximate) two-sided (1-a)-100% confidence

limits as follows:

L -vt 1 -,/ 2 (n-l) V !S sin __(x)

sv
!E t n -1)-- -- U , (3.2)1-a t_/2 (n -



where t1 -,/2 (n-l) is the %-point of Student's t; then

invert to obtain (approximate) two-sided (1-a) -100%

confidence limits for survival beyond x:

sin 2(L) 5 F(x) sin2 (U) (3.31

Theoretical justification of such a procedure for large n is

given in a final section of this paper. The quality of the

product is illustrated by simulation examples to appear subse-

quently.

3.2. Alternatives to the Jackknife: "Greenwood's formula"

The classical estimate of the variance of the estimate

F (x) is given by "Greenwood's formula," see Kaplan and Meiern

(1958), p. 477, or Thomas and Grunkemeier (1975), p. 867. Again

when no ties are present this may be expressed as

^ -0 PF(x 2 Tl) 6i
Var [n(X)] = i=0 ni(ni_6i )  (3.4)

It is interesting and reassuring that this approximate formula

delivers exactly (a--) (!.)I as an estimated variance when all
n n n

observed events are deaths.

It follows that approximate two-sided (1-a)• 100%

confidence limits may be obtained by this procedure:

a) Select a value of x at which to estimate survival

probability.

b) Compute F (x), the point estimate of survival
n

probability.
2 A Va 0x fom(.)

c) Compute s G =ar[Fx from (3.4).

8



d) Compute approximate two-sided (1-a) •100% confidence

limits:

L -G -0 SGG (x) - z1 -2  , UG =n(x) + zlc/2

where is the (i-a/2) • 100 percent point of

the unit Normal. Then

LG : POW f U G  (3.5)

with approximately the quoted confidence.

For justification of the above procedure, which we will

call the Z1 procedure following Thomas and Grunkemeier (1975),

when n is large refer to Breslow and Crowley (1974). Simulation

results appear subsequently.

3.3. An Approximate Likelihood-Ratio Interval Estimate

Thomas and Grunkemeier (1975) propose use of a likelihood-

ratio based procedure for obtaining approximate (l-a)-100%

confidence limits. In outline, the procedure approximately maxi-

mizes the likelihood of a survival function under a constraint;

this will be called the Z2 procedure. For a similar development

see Madansky (1965). Specifically, one maximizes the likelihood

(5d) of Kaplan and Meier, subject to the constraint that survival

to time x equals F0 :

k(x) k(x)
max L = {i £n (l-pi) + (ni-6i)npi }+ Xf npi-Zn Fn0}

(pil) i=l ii

(3.6)
n

+ 1 {6i Zn (i-pi) + (ni-6i)ZnPi }

i=k(x)+ 1

giving estimates

9



n +--X

n. + A
il ) = 1n. +A i =1,..kx)

1
(3.7)

n. - 5.n 6i = k(x)+l,. .. ,n
n

and

k(x) -O
1 pi( ) - F (x;X) (3.8)

from the constraint condition. Next (numerically)solve the

equation

[F (x) -F (x;A)I/F0(x;A) /Y(A) = -z (3.9)

for XL and Au where F0 is the product-limit estimate of
n

survival beyond x, F (x;X ) is given by (3.8), and zl_-/2

is the (i-a/2) 100th percent point of the unit normal distribu-

tion. Then, according to Thomas and Grunkemeier (see footnote,

p. 867) V(X) may be expressed as follows:

k(x)
'V(A) [(n+A)/n]l 6i/(ni+)(ni-i

(3.10)

[l-FO(x;)]/[FO(x;A) n(x)] for FO(x;A) = 1n

here n(x) is the number of individuals exposed at x. Finally,

(approximate) upper and lower confidence limits for Fox) are

obtained by substituting XL and XU  into (3.8):

k (x)[ni+AL-6 i  k (x)fni+u-6i (
PL [ + J and = . n+AuJ (3.11)

i= n + L i

10



The principle difficulty with application of this

method is the numerical solution of (3.9) for the roots XL

and X U" A Newton-Raphson method was utilized in the program

developed for this study. It was only feasible to make exten-

sive trials of the procedure for sample size n = 25.

11



4. Simulation Results

In order to compare the performance of the jackknife

procedure to the other candidates described above, namely Z1

and Z2 , some of the particular cases treated by Thomas and

Grunkemeier (1975, p. 168ff.) were simulated, and nominal 95%

and 90% confidence limits were constructed. We summarize the

results in the following tables. Note that assessments are made

of interval performance at three probability-of-survival levels:

0.75, 0.50, 0.25 for each combination of death and failure

distributions.

Examination of the tabulationsof confidence limit coverage

and also the average and standard deviations of c.i. widths sug-

gest that the jackknife confidence intervals perform in a generally

conservative manner as compared to the "Greenwood's formula"

results (ZI) and the approximate likelihood ratio method (Z2).

That is, JK tends to over-cover, while Z1 consistently under-

covers; Z2 has some tendency to under-cover with severe losses

(Case 1) and for small probabilities of survival but generally

performs well. Of the three estimating procedures, Z2 is by

far the most difficult and expensive to carry out. The computer

time involved in computing Z2  for n = 50 prohibited tabulation

of those results for this study. Note that the tendency of the

jackknife to over-cover is reduced as the probability of survival

decreases. Actually abusrdly low values occur for survival proba-

bilities 0.50 and 0.25 in Case 1; they are a consequence of

the severe censoring assumed. In general, the results obtained

indicate that the jackknife procedure is a worthy competitor of

12
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"Greenwood's formula" under present circumstances, and that it

performs only a little less effectively than does the approxi-

mate likelihood-based procedure Z2. The presented jackknife

technique tends to be conservative.

In order to supplement the above information, a number of

additional simulations were made to investigate the effect of

departure from the random censoring model. Specifically, the

censoring time, Yi, was allowed to depend probabilistically

upon the time of death, Xi, for a sequence of experiments. A

selection of the results obtained are shown next.

In the above situations, in which X. and Y. are now1 1

contrived to be positively dependent, once again the jackknife

tends to result in over-coverage--i.e. is conservative, and some-

times radically so. This is to be contrasted with Greenwood's

formula results, Zi, which generally under-cover. Here there

is some indication that the likelihood ratio procedure, Z2,

has a tendency to under-cover when the survival probability is

near 0.5. Of course, all results are for rather small sample

sizes, and refer to exponentially distributed deaths.
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5. Summary of Theoretical Developments

In this section a probability model for random censoring

is introduced. In terms of this model it will be shown that the

jackknife produces asymptotically correct confidence limits for the

survival probability from the Kaplan-Meier estimator. A priori

one could not be certain whether to systematically delete each

observation in turn when applying the jackknife or whether to

delete only the uncensored ones. Our results show that the proper

method is to delete each observation, censored or uncensored.

5.1. The Model

0 0 0Let XXX 0
2 ... Axn be independent random variables distrib-

uted according to cdf F 0(x), which is continuous with F 0(0) = 0.

In medical applications X represents the survival time of the
1

ith patient, and in engineering reliability it represents the

time to failure of the ith equipment (or the ith time to failure

0of an equipment, when appropriate).The problem is to estimate F

but unfortunately the X0 are not all directly observable.
i

Let Y1 , Y2 1 ...Yn be independent random variables, identi-

cally distributed according to cdf G, the latter being continu-

ous with G(O) = 0. The observable variables are then

0

Xi  min{XiY i }

and 6. = I{X0< g}

where I{A} is the indicator function for event A. The Y.1

variables represent censoring times, and are assumed to be independ-

ent of the X0 . The statistician actually observes the smaller
1

22



of the two variables, and also knows whether the observation is

uncensored (a "death") or censored (a "loss").

5.2. Cumulative Hazard Function

The Kaplan-Meier estimator F0  is closely related to then

sample cumulative hazard function (chf). The latter is defined

as

0n 6.(x)
An(x) n-i+l (5.2)

where 6i (x) is defined in (2.2). In fact Breslow and Crowley

(1974) show that

-t0n[ 1-n (x)I A (x) +0 (1/n) (5.3)
n- n p

and it may be shown that

A0 (x) a, J dF (x)
n I-F0 (x) (5.4)

0

the integral of the hazard function X0 (u) = dF 0(u)/[l-F 0(u)];

both (5.3) and (5.4) justify the name given to A0 .n

It is convenient to show that the jackknifed estimator of

F0 , denoted by P0(s), is asymptotically normal by startingn

with A0 . If one shows that A(X)n is asymptotically normally

distributed then it follows that F 0 (x) is also normal, as isn

true of other sufficiently smooth functions (e.g. arc sine) of

FP 0(). If, in addition, it is shown that the jackknife variancen

is consistent then the jackknife confidence procedure illustrated

in Section 4 is justified for large sample sizes.
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5.3. Asymptotic Normality

Let Anol(x;i) be the sample chf when the ith ordered

observation X W is deleted from the sample. Then

0 i-i (i) (X) n ()
A n (x;i) = YnnJ(5j.5 jjil n - + 1

The corresponding pseudo-value is

0 0 0
A (x;i) = nA (x) - (n-l)A (x;i)An n n-I 1 i

n x) i-i (j-l) 6  (x) n 6 x)n -i) M 2 J (J) (5 6)
j--ill (n-j)(n-j+l) + j=i+l n-j + (56

The jackknifed estimator is the average of the pseudo-

values. From (5.6),

-0 1n -0
An (X)=- I A (x;i)

n 6 U) n i-i (j-l) 6 (X) 1 n n 6 (x)
1n-i+l- n iz2jl(n-j) (n-j+l) n i., j= i+l n-j+l

i=l i 2 j=lil i1 jl

(5.7)
A0  n-i (n-j) (j-l)6 (x) n (j-l)6 (x)0 n (j) +1 (j)

njn =1 (n-j) (n-j+l) n =2 n- j + 1

=A0(X) + n- 6 (x)n (n)

Thus the jackknifed estimator and the original estimator

differ by an asymptotically negligible term. Now it has been

shown that A0 (x) is asymptotically normal with mean A0 x) andn
variance
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t dF0 (5.8)

n 0 (l-F) (I-F 0 )

(cf. Breslow and Crowley (1974), Theorem 4), and so it follows

that A 0(x) has the same asymptotic distribution.n

In order to study the Kaplan-Meier estimator, expand the

logarithm:

n 6 (x)kn POWX = -A 0() + 1 1 (i) (5.9)
n n 2 i=l (n-i+l)2

Now jackknife, and observe that the result of jackknifing the

second and higher order terms in (5.9) lead to expressions which

are o (1//n), and so the jackknifed version of Zn FO(x) has
p n

the same asymptotic (normal) distribution as -A 0n W. Sincen

exp[Zn F0(x)] = F0(x), and the exponential function is smoothn n

(possesses a power-series expansion) it may be shown that the

normality of the jackknifed version of in P0 (x) implies that
n

of the jackknifed 0 (x). Furthermore, the asymptotic normal
n 0 dF0

distribution has mean F(x) and variance (1-F 0 (x) 0 xn 0(1-F) (1-F 0 )

5.4. Consistency of the Sample Variance

It may be shown that the sample variance of pseudovalues

converges (a.s.) to the correct population variance, further

justifying the use of the jackknife for large samples. We merely

sketch the demonstration; see Miller (1975) for details. Begin

again by considering the pseudovalues obtained by jackknifing

the sample cumulative hazard function. From (5.5) the jackknife

variance estimate is given by
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0n n A0 }2

nVar [A (x) X f A (x; - A (x)i=l n- n

n n n6(i) (x) i-i (j-1)6() (x) n 6 ()(X)

- Y (n-j)(n-j+1) n -j+ Ij=l j=i+l

n 6 ( x) W n-i 6 (x)2 (5.10)

n- j + 1 n (n)

1n -I n n6 (i)(x) i-i (j-l) 6 (j) (x) 6 ()_ (xn) ( x) 2

i n- + 1 (n-j) (nj+l) n .- +1 n

n {6(i) (x) i-i 6(j)(x) 6(n ) (x) 2
(n- l) i+1 (n-j)(n-j+l) n

Now square and study the individual terms. In particular the

first sum of squares is

n 6()(x) 2 n-i n 6(i)x)(n - l1 ) n (ni )(- n -
i n- i i-)

(5.11)
x F

d 
0

4. f (l-F) (1-F 0

0

agreeing with the correct value (5.8) multiplied by n. Conse-

quently the remaining terms must cancel out in the a.s. limit

in order that the jackknife variance function properly. The

steps are omitted here; see Miller (1975) for details. Finally,

the correctness of the jackknife variance for the sample chf extends

to the Kaplan-Meier estimate by previous arguments. It may also

be shown that the jackknife works properly on any estimator which
-0

is a smooth-enough function of Fn; in particular the arc-sine,

log, or logistic transformations may all be jackknifed, which

justifies the approach taken in Sections 3 and 4.

26



AUTHOR AFFILIATIONS, AND ACKNOWLEDGMENTS

Donald P. Gaver is Professor of Operations Research, Naval

Postgraduate School, Monterey, California. His research was

supported in part by the Probability and Statistics Program at

the Office of Naval Research.

Rupert G. Miller is Professor of Statistics, Stanford University,

Stanford, California. His research was supported by a grant

from the Public Health Service.

27



REFERENCES

[1] Breslow, N. and Crowley, J. (1974). A large sample study of
the life-table and product limit estimates under random censor-
ship. Ann. Statist., 2, 437-453.

[2] Cox, D. R. (1972). Regression models and life tables. J. of Roy.
Statist. Soc. B, 34, 187-220.

[31 Cressie, N. (1981). Transformations and the jackknife. J. of
Royal Stat. Soc. (B), 43, No. 2, 177-182.

(4] Efron, B. (1979). Bootstrap methods: Another look at the
jackknife. Annals of Statistics, 7, 1-26.

[51 Efron, B. (1981). Censored data and the bootstrap. J. Am.
Statist. Assoc., 76, 312-319.

[61 Kalbfleisch, J. and Prentice, R. L. (1980). The Statistical
Analysis of Failure Time Data. John Wiley & Sons, NY.

[7] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation
from incomplete observations. J. Am. Statist. Assoc., 53,
457-481.

[81 Madansky, A. (1965). Approximate confidence limits for the
reliability of series and parallel systems. Technometrics, 7,
495-503.

[9] Miller, R. G., Jr. (1964). A trustworthy jackknife. Ann. Math.
Statist. 35, 1594-1605.

[101 Miller, R. G., Jr. (1974). The jackknife--a review. Biometrika,
61, 1-15.

[11] Miller, R. G., Jr. (1975). Jackknifing censored data. Tech.
Report No. 14, Div. of Biostatistics, Stanford University,
Stanford, CA

[12] Mosteller, F. and Tukey, J. W. (1977). Data Analysis and

Regression, Addison-Wesley, Reading, MA.

[13] Thomas, D. R. and Grunkemeier (1975). Confidence interval
estimation of survival probabilities for censored data. J. Am.
Statist. Assoc., 70, 865-871.

[141 Tukey, J. W. (1977), Exploratory Data Analysis. Addison-Wesley
Pub. Co., Reading, Mass.

[15] Turnbull, B. W. (1974). Nonparametric estimation of a survivor-
ship function with doubly censored data. J. Am. Statist. Assoc.,
69, 169-173.

[161 Turnbull, B. W. (1978). The empirical distribution function with
arbitrarily grouped, censored, and truncated data. J. Roy.
Statist. Soc. (B), 38, 290-295.

28



DISTRIBUTION LIST

NO. OF COPIES

Library, Code 0142 4
Naval Postgraduate School
Monterey, CA 93940

Dean of Research 1
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Library, Code 55 2
Naval Postgraduate School
Monterey, CA 93940

Professor D. P. Gaver 148
Code 55Gv
Naval Postgraduate School
Monterey, CA 93940

Chief of Naval Research 2
Arlington, Virginia 22217

Defense Technical Information Center 2
ATTN: DTIC-DDR
Cameron Station
Alexandria, Virginia 22314

29




